Coalescent methods for estimating phylogenetic trees.
نویسندگان
چکیده
We review recent models to estimate phylogenetic trees under the multispecies coalescent. Although the distinction between gene trees and species trees has come to the fore of phylogenetics, only recently have methods been developed that explicitly estimate species trees. Of the several factors that can cause gene tree heterogeneity and discordance with the species tree, deep coalescence due to random genetic drift in branches of the species tree has been modeled most thoroughly. Bayesian approaches to estimating species trees utilizes two likelihood functions, one of which has been widely used in traditional phylogenetics and involves the model of nucleotide substitution, and the second of which is less familiar to phylogeneticists and involves the probability distribution of gene trees given a species tree. Other recent parametric and nonparametric methods for estimating species trees involve parsimony criteria, summary statistics, supertree and consensus methods. Species tree approaches are an appropriate goal for systematics, appear to work well in some cases where concatenation can be misleading, and suggest that sampling many independent loci will be paramount. Such methods can also be challenging to implement because of the complexity of the models and computational time. In addition, further elaboration of the simplest of coalescent models will be required to incorporate commonly known issues such as deviation from the molecular clock, gene flow and other genetic forces.
منابع مشابه
The accuracy of species tree estimation under simulation: a comparison of methods.
Numerous simulation studies have investigated the accuracy of phylogenetic inference of gene trees under maximum parsimony, maximum likelihood, and Bayesian techniques. The relative accuracy of species tree inference methods under simulation has received less study. The number of analytical techniques available for inferring species trees is increasing rapidly, and in this paper, we compare the...
متن کاملEstimating species phylogeny from gene-tree probabilities despite incomplete lineage sorting: an example from Melanoplus grasshoppers.
Estimating phylogenetic relationships among closely related species can be extremely difficult when there is incongruence among gene trees and between the gene trees and the species tree. Here we show that incorporating a model of the stochastic loss of gene lineages by genetic drift into the phylogenetic estimation procedure can provide a robust estimate of species relationships, despite wides...
متن کاملEstimating phylogenetic trees from genome-scale data.
The heterogeneity of signals in the genomes of diverse organisms poses challenges for traditional phylogenetic analysis. Phylogenetic methods known as "species tree" methods have been proposed to directly address one important source of gene tree heterogeneity, namely the incomplete lineage sorting that occurs when evolving lineages radiate rapidly, resulting in a diversity of gene trees from a...
متن کاملGenes with minimal phylogenetic information are problematic for coalescent analyses when gene tree estimation is biased.
The development and application of coalescent methods are undergoing rapid changes. One little explored area that bears on the application of gene-tree-based coalescent methods to species tree estimation is gene informativeness. Here, we investigate the accuracy of these coalescent methods when genes have minimal phylogenetic information, including the implementation of the multilocus bootstrap...
متن کاملIs a new and general theory of molecular systematics emerging?
The advent and maturation of algorithms for estimating species trees-phylogenetic trees that allow gene tree heterogeneity and whose tips represent lineages, populations and species, as opposed to genes-represent an exciting confluence of phylogenetics, phylogeography, and population genetics, and ushers in a new generation of concepts and challenges for the molecular systematist. In this essay...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular phylogenetics and evolution
دوره 53 1 شماره
صفحات -
تاریخ انتشار 2009